Performance assessment
Endpoints to obtain fairness metrics for your AI models
Get performance metrics
GET
https://api.expai.io/api/performance/<model_id>/get_metrics
For a given model in your projects, get the available performance metrics
Path Parameters
Name | Type | Description |
---|---|---|
model_id | string | Unique ID for the model |
Headers
Name | Type | Description |
---|---|---|
access-token | string | Active JWT token |
Compute Performance Metrics on subgroups
POST
https://api.expai.io/api/performance/<model_id>/compute
This endpoint returns the desired performance metrics for your model on specific subset of data given by a variable.
Path Parameters
Name | Type | Description |
---|---|---|
model_id | string | Unique ID for the model you want to evaluate |
Headers
Name | Type | Description |
---|---|---|
access-token | string | Active JWT token |
Request Body
Name | Type | Description |
---|---|---|
metrics | array | List of metrics to be evaluated. You must provide the value of the dictionary returned by the previous endpoint. |
sample_id | string | ID for the sample used to evaluate the model. It must contain a target column (supervised). |
variable | string | Variable used to segment the data into groups. |
variable_type | object | Dictionary of the shape {variable: <TYPE>}. Available types are: "numerical" and "categorical". |
subset_indexes | array | Array containing the indexes of the filtered entries that should be considered. |
subset_filters | object | Dictionary containing filtering rules for the dataframe. |
target_class | string | If you are explaining a categorical model, choose the class for which you want to obtain insights. |
Last updated